If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2-18u+15=0
a = 1; b = -18; c = +15;
Δ = b2-4ac
Δ = -182-4·1·15
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{66}}{2*1}=\frac{18-2\sqrt{66}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{66}}{2*1}=\frac{18+2\sqrt{66}}{2} $
| 2(6x-5)=10 | | 13^-3x=15^x+9 | | 6^3x-7=36^x-1 | | 2-2x=3/4+13 | | 2(19x+1)=154 | | (4x+36)=(8x-20) | | 4x^2+19=7 | | 5x-2.06=31.51 | | 5x+2.06=31.51 | | 3x+3=2(3+7) | | .9x=x-8 | | 48=6x-11 | | 2/4=x/12 | | 5p+14=19 | | 100^4x-5=10^x^2+21x+30 | | 7x+2=36 | | 2(q–4)+5(q+2)= | | 500-25x=250 | | 9t+37=-53 | | 9t+37=53 | | 2.3x0.16=0 | | 2j+11=15 | | 4=3x-24x2x | | 4=3(x-8)2x | | 19i−6=222 | | 4=(3x-24)2x | | 2/5(35x+25)-14=3/4(8x-24) | | 6d−5=13 | | -4x-5=2x=-11 | | ((-3x^2)+22x+32)/((6x^2)+12x+6)=0 | | -6(3+7x)=-18 | | 4a+110=180a |